Sn=1/8*(An+2)^2有
Sn-1=1/8*(An-1+2)^2
相减;an=1/8*(An+2)^2-1/8*(An-1+2)^2
整理得(An-An-1-4)*(An+An+1)=0
正整数数列
An-An-1=4
An等差数列
Sn=1/8*(An+2)^2有a1=1/8*(a1+2)^2
a1=2
An=4n-2
Sn=2n^2
Cn=1/(an*an+1)
=1/(4n-2)(4n+2)
=1/2*[1/(2n-1)-1/(2n+1)]
Cn-1=1/2*[1/(2n-3)-1/(2n-1)]
.
c2=1/2*[1/(2*2-1)-1/(2*2+1)]
c1=1/2*[1/(2*1-1)-1/(2*1+1)]
Tn=c1+c2+c3+.+Cn-1+Cn
=1/2*[1/(2*1-1)-1/(2n+1)]
=n/(2n+1)