⑴ a=(√3/2,1/2).c=(-1,0).cos<a,c>=a·c/(|a||c|)=-√3/2
向量a,c的夹角=5π/6.
⑵ f(x)=sin2x-cos2x=√2sin(2x-π/4).
注意3π/4≤2x-π/4≤33π/12.而2π+π/2∈[3π/4,33π/12].
f(x)=2向量a*向量b+1的最大值=√2 [此时x=9π/8]
⑴ a=(√3/2,1/2).c=(-1,0).cos<a,c>=a·c/(|a||c|)=-√3/2
向量a,c的夹角=5π/6.
⑵ f(x)=sin2x-cos2x=√2sin(2x-π/4).
注意3π/4≤2x-π/4≤33π/12.而2π+π/2∈[3π/4,33π/12].
f(x)=2向量a*向量b+1的最大值=√2 [此时x=9π/8]