解题思路:①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;
②由AE=EF<BE,可得AD>2AE,即可得tan∠AED=[AD/AE]>2;
③由AG=GF>OG,可得△AGD的面积>△OGD的面积;
④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;
⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG.
∵四边形ABCD是正方形,
∴∠GAD=∠ADO=45°,
由折叠的性质可得:∠ADG=[1/2]∠ADO=22.5°,
故①正确.
∵tan∠AED=[AD/AE],
由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,
∴AE=EF<BE,
∴AE<[1/2]AB,
∴tan∠AED=[AD/AE]>2,
故②错误.
∵∠AOB=90°,
∴AG=FG>OG,△AGD与△OGD同高,
∴S△AGD>S△OGD,
故③错误.
∵∠EFD=∠AOF=90°,
∴EF∥AC,
∴∠FEG=∠AGE,
∵∠AGE=∠FGE,
∴∠FEG=∠FGE,
∴EF=GF,
∵AE=EF,
∴AE=GF,
故④正确.
∵AE=EF=GF,AG=GF,
∴AE=EF=GF=AG,
∴四边形AEFG是菱形,
∴∠OGF=∠OAB=45°,
∴EF=GF=
2OG,
∴BE=
2EF=
2×
2OG=2OG.
故⑤正确.
∴其中正确结论的序号是:①④⑤.
故选:A.
点评:
本题考点: 翻折变换(折叠问题);正方形的性质.
考点点评: 此题考查了正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.