解题思路:两条直线垂直,首先考虑斜率为0的情况;斜率不为0,斜率之积为-1,分别求出a,可得选项.
直线ax+2y+6=0和直线x+a(a+1)y+(a2-1)=0垂直,
当a=0时显然成立;
当a≠0时,有−
a
2(−
1
a(a+1)) =−1
解得a=-[3/2]
故选A.
点评:
本题考点: 两条直线垂直的判定.
考点点评: 本题考查两条直线垂直的判定,考查分析问题解决问题的能力,是基础题.
解题思路:两条直线垂直,首先考虑斜率为0的情况;斜率不为0,斜率之积为-1,分别求出a,可得选项.
直线ax+2y+6=0和直线x+a(a+1)y+(a2-1)=0垂直,
当a=0时显然成立;
当a≠0时,有−
a
2(−
1
a(a+1)) =−1
解得a=-[3/2]
故选A.
点评:
本题考点: 两条直线垂直的判定.
考点点评: 本题考查两条直线垂直的判定,考查分析问题解决问题的能力,是基础题.