1.设M(x,y)是曲线C'上任意一点,它关于P(a,2a)的对称点为N(2a-x,4a-y),
N在曲线C:y=-x^2+x+2①上,
∴4a-y=-(2a-x)^2+(2a-x)+2,
即y=x^2+(1-4a)x+4a^2+2a-2,②
为C'的方程.
(②-①)/2,x^2-2ax+2a^2+a-2=0,③
∵C与C'相交于A、B两点,
∴△/4=a^2-(2a^2+a-2)=-(a^2+a-2)>0,
∴a^2+a-2
1.设M(x,y)是曲线C'上任意一点,它关于P(a,2a)的对称点为N(2a-x,4a-y),
N在曲线C:y=-x^2+x+2①上,
∴4a-y=-(2a-x)^2+(2a-x)+2,
即y=x^2+(1-4a)x+4a^2+2a-2,②
为C'的方程.
(②-①)/2,x^2-2ax+2a^2+a-2=0,③
∵C与C'相交于A、B两点,
∴△/4=a^2-(2a^2+a-2)=-(a^2+a-2)>0,
∴a^2+a-2