cosα=√3/3
secα = 3/√3
[secα]^2 = 3
[tanα]^2 = 2
tanα = -√2
tanα = 2tan(α/2)/(1-[tan(α/2)]^2 )
-(√2)(1-[tan(α/2)]^2 )= 2tan(α/2)
-1+[tan(α/2)]^2 = √2tan(α/2)
[tan(α/2)]^2 -√2tan(α/2) -1 =0
tan(α/2) = (√2 - √6)/2
cosα=√3/3
secα = 3/√3
[secα]^2 = 3
[tanα]^2 = 2
tanα = -√2
tanα = 2tan(α/2)/(1-[tan(α/2)]^2 )
-(√2)(1-[tan(α/2)]^2 )= 2tan(α/2)
-1+[tan(α/2)]^2 = √2tan(α/2)
[tan(α/2)]^2 -√2tan(α/2) -1 =0
tan(α/2) = (√2 - √6)/2