√[(a²+b²)/2]
>=(1/2) √[2(a²+b²)]=(1/2)√[(a^2+b^2)+(a^2+b^2)]>=(1/2)√(a^2+b^2+2ab)=(a+b)/2
>=2√[ab]/2=√[ab]
=2ab/(2√[ab])>=2ab/(a+b)
√[(a²+b²)/2]
>=(1/2) √[2(a²+b²)]=(1/2)√[(a^2+b^2)+(a^2+b^2)]>=(1/2)√(a^2+b^2+2ab)=(a+b)/2
>=2√[ab]/2=√[ab]
=2ab/(2√[ab])>=2ab/(a+b)