设t=[(x-a)/(b-x)]^(1/2),则x=(a+bt^2)/(1+t^2),dx=2(b-a)tdt/(1+t^2)^(2),所以原积分=∫[(x-a)/(b-x)]^(1/2)dx/(x-a)=2∫dt/(1+t^2)=2arctant+C=2arctan[(x-a)/(b-x)]^(1/2)+C
设t=[(x-a)/(b-x)]^(1/2),则x=(a+bt^2)/(1+t^2),dx=2(b-a)tdt/(1+t^2)^(2),所以原积分=∫[(x-a)/(b-x)]^(1/2)dx/(x-a)=2∫dt/(1+t^2)=2arctant+C=2arctan[(x-a)/(b-x)]^(1/2)+C