解题思路:所有放法总数为:53,5号盒中没有球的放法总数为:43,由此利用对立事件的概率公式能求出5号盒子中至少有一个球的概率.
所有放法总数为:53=125,
5号盒中没有球的放法总数为:43=64,
∴5号盒子中至少有一个球的概率:
P=1−
43
53=
61
125.
故答案为:[61/125].
点评:
本题考点: 古典概型及其概率计算公式.
考点点评: 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件的概率公式的灵活运用.
解题思路:所有放法总数为:53,5号盒中没有球的放法总数为:43,由此利用对立事件的概率公式能求出5号盒子中至少有一个球的概率.
所有放法总数为:53=125,
5号盒中没有球的放法总数为:43=64,
∴5号盒子中至少有一个球的概率:
P=1−
43
53=
61
125.
故答案为:[61/125].
点评:
本题考点: 古典概型及其概率计算公式.
考点点评: 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件的概率公式的灵活运用.