解:
∫((tanx)^2)*(secx)dx
=∫tanx(secx)'dx
=tanxsecx-∫(secx)^3dx
=tanxsecx-∫(secx)dtanx
=tanxsecx-∫根号(1+(tanx)^2)dtanx
=tanxsecx-(tanxsecx/2)+1/2ln(tanx+secx)
=tanxsecx/2+1/2ln(tanx+secx)+C
解:
∫((tanx)^2)*(secx)dx
=∫tanx(secx)'dx
=tanxsecx-∫(secx)^3dx
=tanxsecx-∫(secx)dtanx
=tanxsecx-∫根号(1+(tanx)^2)dtanx
=tanxsecx-(tanxsecx/2)+1/2ln(tanx+secx)
=tanxsecx/2+1/2ln(tanx+secx)+C