利用:1-1/2+1/3-1/4……+1/(2n-1)-1/2n=1/(n+1)+1/(n+2)+……1/2n
所以:
(1-1*2+1/3-1/4+1/5-.+1/1993-1/1994)/[1/(1+1995)+1/(2+1996)+.+1/(997+2991)]
=(1/998+.+1/1994)/[1/(1+1995)+1/(2+1996)+.+1/(997+2991)]
=(1/2)*(1/998+.+1/1994)/[1/998+1/999+.+1/1994]
=1/2
补充:
1
题目有点问题,最后应该是997+2991 否则和前面规律对不上了!
1 2 3..997
1995 1996.2991
2
还是有问题,中间为除,不为乘!
3
关于:
1-1/2+1/3-1/4……+1/(2n-1)-1/2n=1/(n+1)+1/(n+2)+……1/2n
可以用数学归纳法证明:
如下:
当n=1时,左侧=1-1/2=1/2,右侧=1/2,结论成立;
假设n=k成立,则1-1/2+1/3-1/4……+1/(2k-1)-1/2k=1/(k+1)+1/(k+2)+……1/2k
当n=k+1时,左侧=+1/(2k+1)-1/(2k +2)
右侧=1/(k+2)+……1/2k+1/(2k+1)+1/(2k +2)=+1/(2k+1)+1/(2k +2)-1/(k+1)=)=+1/(2k+1)-1/(2k +2)
根据假设,所以当n=k+1时,左侧=右侧,
所以1-1/2+1/3-1/4……+1/(2n-1)-1/2n=1/(n+1)+1/(n+2)+……1/2n