f(x)=2sin(ωx+π/6),最大值为2,且两个最大值点间的距离为一个周期即T=2π/ω,
又y=f(x)的图像与直线y=2的两个相邻交点的距离最小值等于π/3.
故π/3=T=2π/ω,解得ω=6.
令6x+π/6∈[2kπ-π/2,2kπ+π/2],解得x∈[kπ/3-π/9,kπ/3+π/18].
所以f(x)的单调递增区间为[kπ/3-π/9,kπ/3+π/18].
f(x)=2sin(ωx+π/6),最大值为2,且两个最大值点间的距离为一个周期即T=2π/ω,
又y=f(x)的图像与直线y=2的两个相邻交点的距离最小值等于π/3.
故π/3=T=2π/ω,解得ω=6.
令6x+π/6∈[2kπ-π/2,2kπ+π/2],解得x∈[kπ/3-π/9,kπ/3+π/18].
所以f(x)的单调递增区间为[kπ/3-π/9,kπ/3+π/18].