令y=(1/2)^x=t
∵-3≤x≤2,∴(1/2)^2≤(1/2)^x≤(1/2)^(-3)
∴(1/4)≤t≤8
则y=t^2-t+1=(t-1/2)^2+(3/4) (t∈[1/4,8]
∴当t=1/2时,y最小值=3/4
当t=8时,y最大值=57
∴原函数值域为[3/4,57]
令y=(1/2)^x=t
∵-3≤x≤2,∴(1/2)^2≤(1/2)^x≤(1/2)^(-3)
∴(1/4)≤t≤8
则y=t^2-t+1=(t-1/2)^2+(3/4) (t∈[1/4,8]
∴当t=1/2时,y最小值=3/4
当t=8时,y最大值=57
∴原函数值域为[3/4,57]