(1)证明:在Rt△ABC和Rt△DCE中,
CA=CD
DE=AB
∴Rt△ABC≌Rt△DCE(HL)
∴∠BAC=∠EDC(全等三角形的对应角相等),
∵∠AEF=∠DEC(对顶角相等),∠EDC+∠DEC=90°(直角三角形两锐角互余),
∴∠BAC+∠AEF=∠EDC+∠DEC=90°.
∴∠AFE=180°-(∠BAC+∠AEF)=90°.
∴DE⊥AB.
(2)由题意知:
S △ABD=S △BCE+S △ACD+S △ABE=
1
2 a 2+
1
2 b 2+
1
2 cx,
∵ S △ABD =
1
2 c(c+x) ,
∴
1
2 a 2 +
1
2 b 2 +
1
2 cx=
1
2 c(c+x) .
∴a 2+b 2=c 2.