[a(n+1)+kn+k+b]=q(an+kn+b) 展开
a(n+1)=qan+(qk-k)n+qb-k-b,q=2/3,代入
-k/3=5/3,k=-5 qb-k-b=0 b=15
所以存在 k、b,使得数列{an+kn+b}为等比数列 其中k=-5,b=15 即an-5n+15是等比数列,公比为2/3 其首项是m-10
[a(n+1)+kn+k+b]=q(an+kn+b) 展开
a(n+1)=qan+(qk-k)n+qb-k-b,q=2/3,代入
-k/3=5/3,k=-5 qb-k-b=0 b=15
所以存在 k、b,使得数列{an+kn+b}为等比数列 其中k=-5,b=15 即an-5n+15是等比数列,公比为2/3 其首项是m-10