2为底x的对数记做log(2,x)
g(x)=f(x)^2+f(x^2)
=[1+log(2,x)]^2+(1+log(2,x^2)
=[log(2,x)]^2+4*log(2,x)+2
2^0=1≤x≤4=2^2
所以 0≤log(2,x)≤2
易知函数单调递增
g(min)=0+0+2=2
g(max)=2^2+4*2+2=14
2为底x的对数记做log(2,x)
g(x)=f(x)^2+f(x^2)
=[1+log(2,x)]^2+(1+log(2,x^2)
=[log(2,x)]^2+4*log(2,x)+2
2^0=1≤x≤4=2^2
所以 0≤log(2,x)≤2
易知函数单调递增
g(min)=0+0+2=2
g(max)=2^2+4*2+2=14