(x-1)²/(x²-1)+x²/(x+1)
=[(x-1)²+x²(x-1)]/(x²-1)
=(x²-2x+1+x³-x²)/(x²-1)
=(-2x+1+x³)/(x²-1)
=[1+x(x²-2)]/(x²-2+1)
=1/1
=1
[(a²-b²)/(a²-ab)]/[a+(2ab+b²)/a]
=[(a²-b²)/(a²-ab)]/[(a²+2ab+b²)/a]
=[(a²-b²)/(a²-ab)]*[a/(a+b)²]
=(a²-b²)(a+b)²/(a-b)
=(a+b)³
(x-1)²/(x²-1)+x²/(x+1)
=[(x-1)²+x²(x-1)]/(x²-1)
=(x²-2x+1+x³-x²)/(x²-1)
=(-2x+1+x³)/(x²-1)
=[1+x(x²-2)]/(x²-2+1)
=1/1
=1
[(a²-b²)/(a²-ab)]/[a+(2ab+b²)/a]
=[(a²-b²)/(a²-ab)]/[(a²+2ab+b²)/a]
=[(a²-b²)/(a²-ab)]*[a/(a+b)²]
=(a²-b²)(a+b)²/(a-b)
=(a+b)³