cos^2(A/2)=(1+cosA)/2,因此
cosA=2sinB×sinC -1,又因A+B+C=180,故
cos(180-B-C)=2sinB×sinC -1,将cos(180-B-C)展开,得
cos(180-B-C)=cos180×cos(B+C)+sin180×sin(B+C)
=-cos(B+C)+0
=-cosB×cosC+sinB×sinC
带入原式得,
cosB×cosC+sinB×sinC=1,即
cos(B-C)=1,说明B=C
因此该三角形是等腰三角形.
cos^2(A/2)=(1+cosA)/2,因此
cosA=2sinB×sinC -1,又因A+B+C=180,故
cos(180-B-C)=2sinB×sinC -1,将cos(180-B-C)展开,得
cos(180-B-C)=cos180×cos(B+C)+sin180×sin(B+C)
=-cos(B+C)+0
=-cosB×cosC+sinB×sinC
带入原式得,
cosB×cosC+sinB×sinC=1,即
cos(B-C)=1,说明B=C
因此该三角形是等腰三角形.