由A作AH垂直准线于H,AH=AF(定义),且AF=AH=二分之根号2AK,AH垂直KH,显然直角三角形型解出HK=AH,因为p=8(负的不管了)有定义设A(x,x+4),代入原式,解出A点,世界从此清净了
高三一道抛物线小题,已知抛物线y^2=2px的焦点F到其准线的距离为8,抛物线的准线与x轴交点为K,点A在抛物线上,且|
1个回答
相关问题
-
已知抛物线y 2 =2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5.
-
已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5,过A
-
已知抛物线y 2 =2px(p>0)的焦点F与双曲线 - =1的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛
-
过抛物线y 2 =2px(p>0)的焦点F的直线与抛物线在第一象限的交点为A,与抛物线的准线的交点为B,点A在抛物线的准
-
一道数学题:已知P为抛物线y^2=-2x上的一点,F为焦点,M为抛物线的准线m与x轴的交点,连接PF
-
已知抛物线C:y^2=2px的焦点为F,点k(-1,0)为直线l与抛物线c准线的交点,直线l与抛物线C相交于AB两点,点
-
已知抛物线y^2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线的距离为5,经过(2
-
已知抛物线c1:y²=2px(p>0)上一点p到其焦点F的距离为3/2,已达以P为圆心且与抛物线准线
-
求解高三数学题1.过抛物线y^2=2px(p>0)的焦点F的直线l与抛物线在第一象限的焦点为A,与抛物线的准线的焦点为B
-
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B,点C在抛物线的准线上,且BC平行与x轴求证