因为Sn=2an+2^n,则a1=S1=2a1+2^1,所以a1=-2,(说明:2^n表示2 的n次方)
Sn=2an+2^n,S(n-1)=2a(n-1)+2^(n-1),两式相减得
an=Sn-S(n-1)=2an+2^n-[2a(n-1)+2^(n-1)]
=2an-2a(n-1)+2^n-2^(n-1)=2an-2a(n-1)+2^(n-1)
所以an=2a(n-1)-2^(n-1)
2a(n-1)=2×2a(n-2)-2×2^(n-2) =2^2a(n-2)-2^(n-1)
2^2a(n-2)=2^2×2a(n-3)-2^2×2^(n-3) =2^3a(n-3)-2^(n-1)
……………………
2^(n-2)a2=2^(n-2)×2a1-2^(n-2)×2^1 =2^(n-1)a1-2^(n-1)
然后上面n-1个式子叠加得
an=2^(n-1)a1-(n-1)×2^(n-1)
=2^(n-1)×(-2)-n×2^(n-1)+2^(n-1)
=-1×2^(n-1)-n×2^(n-1)
=-(n+1)×2^(n-1)
所以通项为an=-(n+1)×2^(n-1)
bn=an/2^n=[-(n+1)×2^(n-1)]/2^n
即bn =-(n+1)/2 它是等差数列