过B作BE⊥CD交CD延长线于E,所以AC∥BE
S△ACD:S△CDB=1/2AC*CD:1/2BE*CD=1:3
推出AC:BE=1:3=CD:DE
1
设CD=x,DE=3x
cos∠DCB=4/5
所以BC=5x,BE=3x
∠A=∠DBE=arctanDE/EB=45°
2
AC=CD=18,即x=18
AB=AD+DB=根号2(DC+DE)=根号2*4x=72*根号2
过B作BE⊥CD交CD延长线于E,所以AC∥BE
S△ACD:S△CDB=1/2AC*CD:1/2BE*CD=1:3
推出AC:BE=1:3=CD:DE
1
设CD=x,DE=3x
cos∠DCB=4/5
所以BC=5x,BE=3x
∠A=∠DBE=arctanDE/EB=45°
2
AC=CD=18,即x=18
AB=AD+DB=根号2(DC+DE)=根号2*4x=72*根号2