设A(x1,y1),B(x2,y2),D(x1,-y1),l的方程为x=my-1(m≠0).⑴、证明:将L:x=my-1带入y?x并整理得y?my+4=0,从而y1+y2=4m,y1y2=4.直线BD的斜率为k=(y2+y1)/(x2-x1)=(y2+y1)/[(my2-1)-(my1-1)]=4m/[m(y2-y1)]=4/(y2-y1) ∴直线BD的方程为y-y2=[4/(y2-y1)]?獂-x2)=[4/(y2-y1)]?獂-y2?) 令y=0,解得x=y1y2/4=1,所以点F(1,0)在直线BD上.
已知抛物线y^2=4x的焦点F,过点K(-1,0)的直线与抛物线交与A.B两点,点A关于x轴的对称(1)证明点F在直线B
1个回答
相关问题
-
已知抛物线c y^2=4x的焦点为f,过点k(-1,0)的直线1与c相交于a、b两点,点a关于x轴的对称点为d.证明:点
-
已知抛物线C,y^2=4x的焦点为F,过点K(-1,0)的直线L与C相交与A,B两点,点A关于X轴的对称点为D.
-
已知抛物线C:y2(方)=4x的焦点为F,过点K(-1,0)的直线L与C相交于A.B两点,点A关于X轴的对称点为D.证明
-
已知抛物线C:y2=4x 的准线与x轴交与M点,F为抛物线的焦点,过M点斜率为k的直线l与抛物线交与A B两点.
-
已知抛物线的顶点在坐标原点,焦点为F(1,0),点P是点F关于y轴的对称点,过点P的动直线ι交抛物线与A,B两点.
-
已知抛物线C:x平方=4y的焦点为F,过点K:(0,-1)的直线l与C相交于A,B两点,点A 关于y轴的对称点为D .(
-
已知过抛物线y²=4x焦点F的直线与抛物线交A、B两点,过原点O的直线AO交抛物线准线于C点
-
如图,抛物线 与x轴交于A.B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴
-
抛物线x^2=4y 的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,
-
已知抛物线y=[1/4]x2,点M (0,1)关于x轴的对称点为N,直线l过点M交抛物线于A,B两点