∵AE=AF;AB=AD.
∴Rt⊿ABE≌Rt⊿ADF(HL),BE=DF.
∴CE=CF,设CE=CF=X,则BE=1-X;AE=EF=√2X.
∵AB^2+BE^2=AE^2,即1^2+(1-X)^2=(√2X)^2.
∴X=√3-1(取正值).故EF=√2X=√6-√2.
∵AE=AF;AB=AD.
∴Rt⊿ABE≌Rt⊿ADF(HL),BE=DF.
∴CE=CF,设CE=CF=X,则BE=1-X;AE=EF=√2X.
∵AB^2+BE^2=AE^2,即1^2+(1-X)^2=(√2X)^2.
∴X=√3-1(取正值).故EF=√2X=√6-√2.