(1)在恒等式f(x+y)+f(x-y)=2f(x)f(y)中,
令x=y=0,得f(0)+f(0)=2f(0)f(0),
f(0)[f(0)-1]=0,
∵f(0) ≠0,
∴f(0)-1=0,即f(0)=1;
(2)由(1)知f(0)=1,
在恒等式中,令x=0,得
f(y)+f(-y)=2f(0)f(y)=2f(y)
f(-y)=f(y),
∴由偶函数的定义可知,f(x)为偶函数.
(1)在恒等式f(x+y)+f(x-y)=2f(x)f(y)中,
令x=y=0,得f(0)+f(0)=2f(0)f(0),
f(0)[f(0)-1]=0,
∵f(0) ≠0,
∴f(0)-1=0,即f(0)=1;
(2)由(1)知f(0)=1,
在恒等式中,令x=0,得
f(y)+f(-y)=2f(0)f(y)=2f(y)
f(-y)=f(y),
∴由偶函数的定义可知,f(x)为偶函数.