f(x)=(√3sinwx+coswx)coswx-1/2
=√3sinwxcoswx+cos²wx-1/2
=√3/2(2sinwxcoswx)+1/2(2cos²wx-1)
=√3/2sin(2wx)+1/2cos(2wx0
=sin(2wx+π/6)
∴2π/(2w)=4π ∴w=1/2
∴f(x)=sin(x+π/6)
∴当x+π/6∈[2kπ-π/2,2kπ+π/2]即x∈[2kπ-2π/3,2kπ+π/3]时,f(x)单调递增
当x+π/6∈[2kπ+π/2,2kπ+3π/2]即x∈[2kπ+π/3,2kπ+4π/3]时,f(x)单调递减