f(x)=sinwx^2+√3/2sin2wx-1/2 =1/2+√3/2sin2wx-1/2cos2wx-1/2=sin2wxcosπ/6-cos2wxsinπ/6=sin(2wx-π/6) 2π/2w=2π w=1/2
f(x)=sin(x-π/6) -π/2+x-π/6
f(x)=sinwx^2+√3/2sin2wx-1/2 =1/2+√3/2sin2wx-1/2cos2wx-1/2=sin2wxcosπ/6-cos2wxsinπ/6=sin(2wx-π/6) 2π/2w=2π w=1/2
f(x)=sin(x-π/6) -π/2+x-π/6