1.
令x1=0,x2=0带入f(x1+x2)=f(x1)+f(x2)+1得
f(0)=f(0)+f(0)+1,所以f(0)=-1
再令x1=x,x2=-x带入得
f(0)=f(x)+f(-x)+1,f(x)+f(-x)=-2所以f(x)不是奇函数
而可知
[f(x)+1]+[f(-x)+1]=0 所以f(x)+1为奇函数
2.
f(x)是定义在R上的以3为周期的偶函数
则可知
f(x)=f(-x)
f(x)=f(x+3)
所以f(-x)=f(3+x)即f(x)=f(3-x)
即f(x)是以3/2为对称轴的
f(2)=0即2时该区间的一个解
根据函数的性质(偶函数,以3为周期,关于3/2对称得)在(0,6)内的解为
2,5,1,4