证明:
a、b、c、d是正数,且a+b+c+d=1,
故依Cauchy不等式得
[(a+1)+(b+1)+(c+1)+(d+1)][a^2/(a+1)+b^2/(b+1)+c^2/(c+1)+d^2/(d+1)]≥(a+b+c+d)^2
即5[a^2/(a+1)+b^2/(b+1)+c^2/(c+1)+d^2/(d+1)]≥1^2
∴a^2/(a+1)+b^2/(b+1)+c^2/(c+1)+d^2/(d+1)≥1/5.
证毕.
证明:
a、b、c、d是正数,且a+b+c+d=1,
故依Cauchy不等式得
[(a+1)+(b+1)+(c+1)+(d+1)][a^2/(a+1)+b^2/(b+1)+c^2/(c+1)+d^2/(d+1)]≥(a+b+c+d)^2
即5[a^2/(a+1)+b^2/(b+1)+c^2/(c+1)+d^2/(d+1)]≥1^2
∴a^2/(a+1)+b^2/(b+1)+c^2/(c+1)+d^2/(d+1)≥1/5.
证毕.