f(x)=2cosx+(sinx)^2=2cosx+1-(cosx)^2
= -(cosx)^2+2cosx+1 (-π/4,π/2]
令:t=cosx
因为 (-π/4,π/2],所以 [0,1]
原式为:
f(t)= -t^2+2t+1 [0,1]
f(t)= -t^2+2t+1
= -(t-1)^2+2
结合定义域可知,当t=0时,取最小值.
f(t)min=f(0)=1
t=cosx=0 ------------------x=π/2
f(x)=2cosx+(sinx)^2=2cosx+1-(cosx)^2
= -(cosx)^2+2cosx+1 (-π/4,π/2]
令:t=cosx
因为 (-π/4,π/2],所以 [0,1]
原式为:
f(t)= -t^2+2t+1 [0,1]
f(t)= -t^2+2t+1
= -(t-1)^2+2
结合定义域可知,当t=0时,取最小值.
f(t)min=f(0)=1
t=cosx=0 ------------------x=π/2