求证:tan(x/2+π/4)+tan(x/2-π/4)=2tanx

1个回答

  • 证明:左边=[tan(x/2) +tan(π/4)]/[1 - tan(x/2)tan(π/4)] + [tan(x/2) - tan(π/4)]/[1 + tan(x/2)tan(π/4)]

    =[tan(x/2) +1 ]/[1 - tan(x/2)] + [tan(x/2) - 1]/[1 + tan(x/2)] (对该式通分后得到下式)

    ={[tan(x/2) +1 ]² - [tan(x/2) -1 ]²/[1- tan²(x/2)]

    =4tan(x/2)/[1- tan²(x/2)] (倍角(半角)公式得到下式)

    =2tanx