解题思路:根据题意画出图形,利用勾股定理建立方程,求出x的值即可.
画图解决,通过建模把距离转化为线段的长度.
由题意得:AB=20,DC=30,BC=50,
设EC为x肘尺,BE为(50-x)肘尺,
在Rt△ABE和Rt△DEC中,AE2=AB2+BE2=202+(50-x)2,DE2=DC2+EC2=302+x2,
又∵AE=DE,
∴x2+302=(50-x)2+202,
x=20,
答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺
另设:这条鱼出现的地方离比较高的棕榈树的树根肘尺,则这条鱼出现的地方离比较低的棕榈树的树根(50-x)肘尺.
得方程:x2+302=(50-x)2+202
可解的:x=20;
答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺.
点评:
本题考点: 勾股定理的应用.
考点点评: 本题考查勾股定理的正确运用;善于挖掘题目的隐含信息是解决本题的关键.