线性代数求教,p=0,q=2(1)求齐次方程组Ax=0的基础解系(2)求方程组Ax=b的通解

1个回答

  • 增广矩阵 B=(A, b)=

    [1 1 1 1 1 1]

    [3 2 1 1 -3 0]

    [0 1 2 2 6 3]

    [5 4 3 3 -1 2]

    初等行变换为

    [1 1 1 1 1 1]

    [0 -1 -2 -2 -6 -3]

    [0 1 2 2 6 3]

    [0 -1 -2 -2 -6 -3]

    初等行变换为

    [1 1 1 1 1 1]

    [0 1 2 2 6 3]

    [0 0 0 0 0 0]

    [0 0 0 0 0 0]

    方程同解变形为

    x1+x2=-x3-x4-x5+1

    x2=-2x3-2x4-6x5+3

    导出组的基础解系为 (1 -2 1 0 0)^T, (1 -2 0 1 0)^T, (5 -6 0 0 1)^T.

    特解为 (-2 3 0 0 0)^T,

    方程组的通解为 x=k1(1 -2 1 0 0)^T+k2(1 -2 0 1 0)^T

    +k3(5 -6 0 0 1)^T+(-2 3 0 0 0)^T.