解
f(x)=2sinx(sinx+cosx)
=2sin²x+2sinxcosx
=sin2x-(1-2sin²x)+1
=sin2x-cos2x+1
=√2(√2/2sin2x-√2/2cos2x)+1
=√2sin(2x-π/4)+1
∵x∈[0,π]
∴2x-π/4∈[-π/4,7π/4]
∴sin(2x-π/4)∈[-√2/2,1]
∴f(x)的最小值为:f(x)min=-1+1=0
最大值为:f(x)min=√2+1
解
f(x)=2sinx(sinx+cosx)
=2sin²x+2sinxcosx
=sin2x-(1-2sin²x)+1
=sin2x-cos2x+1
=√2(√2/2sin2x-√2/2cos2x)+1
=√2sin(2x-π/4)+1
∵x∈[0,π]
∴2x-π/4∈[-π/4,7π/4]
∴sin(2x-π/4)∈[-√2/2,1]
∴f(x)的最小值为:f(x)min=-1+1=0
最大值为:f(x)min=√2+1