(1)计算得: a 1 =1, a 2 =
3
2 , a 3 =
7
4 , a 4 =
15
8 .(3分)
(2)∵s n=2n-a n当n≥2时
∴s n-1=2(n-1)-a n-1两式相减可得:a n=2-a n+a n-1即:
∵ a n =
1
2 a n-1 +1 ⇒a n -2=
1
2 ( a n-1 -2)
所以,数列{a n-2}是首项为a 1-2=-1公比为
1
2 的等比数列
∵ a n -2=(-1)•(
1
2 ) n-1 ⇒a n =2-(
1
2 ) n-1
即 a n =
2 n -1
2 n-1 (7分)
当n=1时,a 1=1,
∴ a n =
2 n -1
2 n-1 ,
(3)因为 n• a n =2n-n•(
1
2 ) n-1
设数列 {n• (
1
2 ) n-1 } 的前n项和为M nM n
= 1•(
1
2 ) 0 + 2•(
1
2 ) 1 + 3•(
1
2 ) 2 + n•(
1
2 ) n-1
1
2 M n
= 1•(
1
2 ) 1 + 2•(
1
2 ) 2 + (n-1)•(
1
2 ) n-1 + n•(
1
2 ) n
两式相减可得:
1
2 M n = (
1
2 ) 0 + (
1
2 ) 1 + (
1
2 ) 2 ++ (
1
2 ) n-1 - n•(
1
2 ) n
=
1- (
1
2 ) n-1
1-
1
2 - n•(
1
2 ) n = 2-(
1
2 ) n - n•(
1
2 ) n
=2- (n+1)•(
1
2 ) n M n
=4- (n+1)•(
1
2 ) n+1 (12分)