解题思路:由函数的解析式,算出f(-x)+f(x)=6对任意的x均成立.因此原不等式等价于f(a-2)>f(-a),再利用导数证出f(x)是R上的单调减函数,可得原不等式即a-2<-a,由此即可解出实数a的取值范围.
∵f(x)=-3x3-5x+3,
∴f(-x)=3x35x+3,可得f(-x)+f(x)=6对任意的x均成立
因此不等式f(a)+f(a-2)>6,即f(a-2)>6-f(a),
等价于f(a-2)>f(-a)
∵f'(x)=-9x2-5<0恒成立
∴f(x)是R上的单调减函数,
所以由f(a-2)>f(-a)得到a-2<-a,即a<1
故选:A
点评:
本题考点: 利用导数研究函数的单调性;函数单调性的性质.
考点点评: 本题给出多项式函数,求解关于a的不等式,着重考查了利用导数研究函数的单调性、函数的奇偶性和不等式的解法等知识,属于基础题.