f(x)=sin(2x+π/6)+sin(2x-π/6)+2cos²x
=sin2xcosπ/6+sinπ/6cos2x+sin2xcosπ/6-sinπ/6cos2x+2cos²x
=2cos²x+2sin2xcosπ/6
=cos2x+1+√3sin2x
=2sin(2x+π/6)+1
f(x)的最大值是3
最小值-1
f(x)=sin(2x+π/6)+sin(2x-π/6)+2cos²x
=sin2xcosπ/6+sinπ/6cos2x+sin2xcosπ/6-sinπ/6cos2x+2cos²x
=2cos²x+2sin2xcosπ/6
=cos2x+1+√3sin2x
=2sin(2x+π/6)+1
f(x)的最大值是3
最小值-1