z=(a-i)/(1+i)=(a-i)(1-i)/2=[a-1-(a+1)i]/2,
z+2i=[a-1+(3-a)i]/2,
u=[a-1-(a+1)i][a-1+(3-a)i]/4
=[(a-1)^+(a+1)(3-a)+(a-1)(2-2a)i]/4
=[4-2(a-1)^i]/4,
依题意[-2(a-1)^-4]/4取到最大值时a=1,z=-i,
∴|z+1|=|1-i|=√2.
z=(a-i)/(1+i)=(a-i)(1-i)/2=[a-1-(a+1)i]/2,
z+2i=[a-1+(3-a)i]/2,
u=[a-1-(a+1)i][a-1+(3-a)i]/4
=[(a-1)^+(a+1)(3-a)+(a-1)(2-2a)i]/4
=[4-2(a-1)^i]/4,
依题意[-2(a-1)^-4]/4取到最大值时a=1,z=-i,
∴|z+1|=|1-i|=√2.