(b+c-a)/a+(c+a-b)/b+(a+b-c)/c
=[bc(b+c-a)+ac(c+a-b)+ab(a+b-c)]/abc
=[b^2c+bc^2+ac^2+a^2c+a^2b+ab^2-3abc]/abc
=[c(b^2+a^2)+a(c^2+b^2)+b(c^2+a^2)-3abc]/abc
(a-b)^2>0
a^2+b^2>2ab
同理b^2+c^2>2bc,c^2+a^2>2ca
则=
[c(b^2+a^2)+a(c^2+b^2)+b(c^2+a^2)-3abc]/abc>[2cab+2abc+2bac-3abc]/abc
[2cab+2abc+2bac-3abc]/abc=3