原式=[(x+4)(x-4)/(x+4)²+x/(x-4)[*(x²-16)
=[(x-4)/(x+4)+x/(x-4)[*(x+4)(x-4)
=(x-4)/(x+4)*(x+4)(x-4)+x/(x-4)*(x+4)(x-4)
=(x-4)²+x(x+4)
=x²-8x+16+x²+4x
=2x²-4x+16
=2(3+2√2)-4(√2+1)+16
=18
原式=[(x+4)(x-4)/(x+4)²+x/(x-4)[*(x²-16)
=[(x-4)/(x+4)+x/(x-4)[*(x+4)(x-4)
=(x-4)/(x+4)*(x+4)(x-4)+x/(x-4)*(x+4)(x-4)
=(x-4)²+x(x+4)
=x²-8x+16+x²+4x
=2x²-4x+16
=2(3+2√2)-4(√2+1)+16
=18