上下同时除以e^(x+1):
原是=∫ [e^(-x-1)]/[e^(2-2x)+1] dx = e^(-2) ∫ [e^(1-x)]/[e^(2-2x)+1] dx
= - e^(-2) ∫ 1/[e^(2-2x)+1] d e^(1-x)
= - e^(-2) arctan[e^(1-x)] | 1--> +无穷大
= - e^(-2) (arctan0 - arctan1)
= - e^(-2) (0 - π/4)
= (π/4)e^(-2)
计算要认真,骚年
上下同时除以e^(x+1):
原是=∫ [e^(-x-1)]/[e^(2-2x)+1] dx = e^(-2) ∫ [e^(1-x)]/[e^(2-2x)+1] dx
= - e^(-2) ∫ 1/[e^(2-2x)+1] d e^(1-x)
= - e^(-2) arctan[e^(1-x)] | 1--> +无穷大
= - e^(-2) (arctan0 - arctan1)
= - e^(-2) (0 - π/4)
= (π/4)e^(-2)
计算要认真,骚年