证明:由kx-y-k=0得:y=kx-k
代入到x^2+y^2-2x=0 中,得:
x²-2x+k²x²-2k²x+k²=0
(1+k²)x²-(2+2k²)x+k²=0
则x1+x2=(2+2k²)/(1+k²),x1x2=k²/(1+k²)
(x1-x2)²=(x1+x2)²-4x1x2
=(2+2k²)²/(1+k²)²-4×k²/(1+k²)
=[(2+2k²)²-4k²(1+k²)]/(1+k²)²=4/(1+k²)
∵(y1-y2)²=k²(x1-x2)²=4k²/(1+k²)
∴(x1-x2)^2+(y1-y2)^2= 4/(1+k²)+4k²/(1+k²)
=4
则(x1-x2)^2+(y1-y2)^2是一个常数4