证明 正定矩阵问题:设A为n阶实对称阵,且A^2-5A+6E=0,求证A是正定矩阵~时间紧急,麻烦给出详细解答,谢谢!
1个回答
特征方程吗!
x^2-5x+6=0
所以特征值为
x1=2,x2=3,x3=2或者3
特正直都是正数,一定正定了
...
相关问题
线性代数正定性问题(1)设A是n阶实矩阵,证明A^TA+E正定(2)设A是n阶是对称矩阵,证明A^2+A+E正定
设A为n阶实对称矩阵.1.证明A的平方+E也为实对称矩阵2.证明:A的平方+E为正定阵其中E为n阶单位阵
设A为n阶实对称矩阵,且满足A3+A2+A=3E,证明A是正定矩阵.
设A为n阶实对称矩阵(1)证明:A的平方+E也为实对称矩阵(2)证明:A的平方+EWEI为正定阵(其中E为n阶单位矩阵
设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵
设A是n阶对称正定矩阵,求证:存在唯一的正定阵B使A=B*B
设A为n阶正阶正定矩阵,证明A的伴随矩阵A*也是正定矩阵
设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵
如果A是n阶正定矩阵,B是n阶实反对称矩阵,证明 A-BTB是 正定矩阵.
设A是n阶实对称矩阵 证明:A是半正定矩阵当且仅当对任意n阶半正定矩阵B都有tr(AB)大于等于