用“首项加末项,乘以项数除以2”的那个前n项和公式,分别代入到已知等式中的Sn,Tn中很容易得到:Sn/Tn=[(a1+an)n/2]/[(b1+bn)n/2]=2n/(3n+1)
即(a1+an)/(b1+bn)=2n/(3n+1)
而等差数列
2a5=a1+a9
2b5=b1+b9
两式相除,再据前面的式子就得:
a5/b5=(a1+a9)/(b1+b9)=2*9/(3*9+1)=18/28=9/14
用“首项加末项,乘以项数除以2”的那个前n项和公式,分别代入到已知等式中的Sn,Tn中很容易得到:Sn/Tn=[(a1+an)n/2]/[(b1+bn)n/2]=2n/(3n+1)
即(a1+an)/(b1+bn)=2n/(3n+1)
而等差数列
2a5=a1+a9
2b5=b1+b9
两式相除,再据前面的式子就得:
a5/b5=(a1+a9)/(b1+b9)=2*9/(3*9+1)=18/28=9/14