要使函数y=2-√(-x^2+4x)有意义
则-x^2+4x≥0
0≤x≤4
所以
-x^2+4x=-(x^2+4x+4-4)
=-(x+2)^2+4
所以0≤-x^2+4x≤4
0≤√(-x^2+4x)≤2
-2≤√(-x^2+4x)≤0
所以0≤2-√(-x2+4x)≤2
因此函数y=2-√(-x2+4x) 值域是
[0,2]
要使函数y=2-√(-x^2+4x)有意义
则-x^2+4x≥0
0≤x≤4
所以
-x^2+4x=-(x^2+4x+4-4)
=-(x+2)^2+4
所以0≤-x^2+4x≤4
0≤√(-x^2+4x)≤2
-2≤√(-x^2+4x)≤0
所以0≤2-√(-x2+4x)≤2
因此函数y=2-√(-x2+4x) 值域是
[0,2]