原式=√3sinωxcosωx+cosωxcosωx
=√3/2sin2ωx+1/2(1+cos2ωx)
=sinπ/3sin2ωx+cosπ/3cos2ωx)+1/2
=-cos(π/3-2ωx)+1/2
=cos(2ωx+2π/3)
令2π/3+2ωx=k(2π/2ω)/2,又0
原式=√3sinωxcosωx+cosωxcosωx
=√3/2sin2ωx+1/2(1+cos2ωx)
=sinπ/3sin2ωx+cosπ/3cos2ωx)+1/2
=-cos(π/3-2ωx)+1/2
=cos(2ωx+2π/3)
令2π/3+2ωx=k(2π/2ω)/2,又0