因为1/[n(n+2)]=1/2 × [(n+2)-n]/[n(n+2)]=1/2 × [1/n-1/(n+2)]
所以11×3 + 12×4+ 13×5 …… +118×20
=1/2×(1/1-1/3)+1/2×(1/2-1/4)+1/2×(1/3-1/5)+……+1/2×(1/18-1/20)
=1/2×(1/1-1/3+1/2-1/4+1/3-1/5+……+1/18-1/20)
=1/2×(1+1/2-1/19-1/20)
=1/2×531/380
=531/760
祝学习快乐
因为1/[n(n+2)]=1/2 × [(n+2)-n]/[n(n+2)]=1/2 × [1/n-1/(n+2)]
所以11×3 + 12×4+ 13×5 …… +118×20
=1/2×(1/1-1/3)+1/2×(1/2-1/4)+1/2×(1/3-1/5)+……+1/2×(1/18-1/20)
=1/2×(1/1-1/3+1/2-1/4+1/3-1/5+……+1/18-1/20)
=1/2×(1+1/2-1/19-1/20)
=1/2×531/380
=531/760
祝学习快乐