连接DE
∵AD平分∠OAB
∴∠DAE=∠DAO
∵OE⊥AD
∴∠AFE=∠AFO=90°
∵在△AEF与△AOF中﹛∠DAE=∠DAO
AF=AF
∠AFE=∠AFO
∴△AEF≌△AOF(AAS)
∴AE=AO
∵在△AED与△AOD中﹛AE=AO
∠DAE=∠DAO
AD=AD
∴AED≌△AOD(SAS)
∴DE=DO,∠AED=∠AOD
又∵∠AOB=90° 即∠AOD=90°
∴∠AED=90°
∴∠BAO+∠ODE=360°-∠AED-∠AOD=180°
∵∠BDE+∠ODE=180°
∴∠BDE=∠BAO
∵在△AOB中,OA=OB
∴∠B=∠BAO
∴∠B=∠BDE
∵在△BED中,∠B=∠BDE
∴BE=DE
∴BE=OD