设y=rcosa,z=rsina,则dydz=rdrda,
D={(x,y,z) | x^2+y^2+z^2≤4,x^2+y^2+z^2≤4x},是被平面x=1分成的两个球缺,
∴∫∫∫x^2dxdydz=∫da[∫x^2dx∫rdr+∫x^2dx∫rdr]
=π[∫x^2*(4x-x^2)dx+∫x^2*(4-x^2)dx]
=π[1-1/5+28/3-31/5]
=59π/15.
仅供参考.
设y=rcosa,z=rsina,则dydz=rdrda,
D={(x,y,z) | x^2+y^2+z^2≤4,x^2+y^2+z^2≤4x},是被平面x=1分成的两个球缺,
∴∫∫∫x^2dxdydz=∫da[∫x^2dx∫rdr+∫x^2dx∫rdr]
=π[∫x^2*(4x-x^2)dx+∫x^2*(4-x^2)dx]
=π[1-1/5+28/3-31/5]
=59π/15.
仅供参考.