∵OE是∠AOC的角平分线
∴∠AOE=∠COE=(1/2)·∠AOC
同理可得:∠BOD=∠COD=(1/2)·∠BOC
(1)当OC在∠AOB内部时,有:
∠AOB=∠AOC+∠BOC,∠DOE=∠COD+∠COE
∴∠DOE=(1/2)·∠AOB=X/2
(2)当OC在∠AOB外部时,有:
∠AOB=|∠AOC-∠BOC|,∠DOE=|∠COD-∠COE|
∴∠DOE=(1/2)·∠AOB=X/2
上述关系仍成立.
∵OE是∠AOC的角平分线
∴∠AOE=∠COE=(1/2)·∠AOC
同理可得:∠BOD=∠COD=(1/2)·∠BOC
(1)当OC在∠AOB内部时,有:
∠AOB=∠AOC+∠BOC,∠DOE=∠COD+∠COE
∴∠DOE=(1/2)·∠AOB=X/2
(2)当OC在∠AOB外部时,有:
∠AOB=|∠AOC-∠BOC|,∠DOE=|∠COD-∠COE|
∴∠DOE=(1/2)·∠AOB=X/2
上述关系仍成立.