k=1/e
设过原点与y=lnx相切的切线切点为:(x0,lnx0)
k=1/x0
切线为;
y-lnx0=(1/x0)(x-x0)
因为切线过原点所以,
0-lnx0=(1/x0)(0-x0)
lnx0=1
x0=e
切点P0(e,1)
k=(1-0)/(e-0)=1/e
k=1/e
设过原点与y=lnx相切的切线切点为:(x0,lnx0)
k=1/x0
切线为;
y-lnx0=(1/x0)(x-x0)
因为切线过原点所以,
0-lnx0=(1/x0)(0-x0)
lnx0=1
x0=e
切点P0(e,1)
k=(1-0)/(e-0)=1/e